
Reaction RuleML Technical Group
Alexander Kozlenkov (Co-Chair)
Adrian Paschke (Co-Chair)

http://ibis.in.tum.de/research/R
eactionRuleML/

Contact: Adrian.Paschke@gmx.de and Alex.Kozlenkov@betfair.com
Project Site: http://ibis.in.tum.de/research/ReactionRuleML/

Int. Conf. On Rules and Rule Markup
Languages for the Semantic Web (RuleML’06)

Reaction RuleML
Technical Group

Reaction RuleML

⇒General, practical, compact, user-friendly XML
serialization syntax for reaction rules

⇒Expressive with minimal, symteric and
orthogonal language design

⇒Supports different reaction rule types such as
ECA rule, active rules, production rules, temporal
KR event/action logics, state processing and
transition rules, update transactions etc.

⇒Intended for (Semantic Web) based Event-Driven
Architectures (EDAs) and Service-Oriented
Architectures (SOA)

⇒Supports e.g.:
♦Real-time Enterprises (RTE)
♦Business Activity Management (BAM)
♦Service Level Management (SLM),

⇒Tool support via Validators, Translators, Editors
⇒Layered Uniform Schema Design

♦Easy to learn and understand
♦Guidance to vendors which need

smaller subset
♦Easier to maintain and extend

Scope of Reaction RuleML

Neg Naf attributeModules
Layer

hornlog

……...

hornlog2rr

RR

Redefines/Extends RuleML HornLog
Derivation Rule Layer
Redefines:
* Var by adding @mode
* Assert by adding @safety
* Retract by adding @safety
* Implies by adding Assert, Retract, Naf,
 Neg and Equal

Reaction Rule Layer
Defines the syntax for:
* Reaction rules
* Complex event / action algebra
* Messages / notifications
* Transactional OID-based updates

equality rr algebra

KR

KR Temporal / Event / Action / Process
Logic Layer
Extends RR layer with state processing
Defines the syntax for:
* KR temporal / event / action logics
* Process / transition logics

state

Layered Reaction RuleML Language

Core Syntax

Reaction RuleML is a general, practical, compact and user-friendly XML-serialized language for
the family of reaction rules. It incorporates different kinds of production, action, reaction, and
KR temporal/event/action logic rules into the native RuleML syntax using a system of step-
wise extensions. In particular, the approach covers different kinds of reaction rules from various
domains such as active-database ECA rules and triggers, forward-directed production rules,
backward-reasoning temporal-KR event/action logics, event notification & messaging and active
update, transition, process and transaction logics.

Glossary
Reaction: General reaction rule construct
@exec: Denotes execution style of the reaction rule: "active | passive | reasoning"; default = "passive"
@kind: Required attribute denoting the kind of the reaction rule, i.e. the rule pattern which defines the constituent parts of the reaction rule
@eval: Attribute denoting the interpretation of the reaction rule: "strong | weak"; default="strong"
event, body, action, postcond, alternative: Role tags for the reaction rule parts which might be omitted (see RuleML role and type tags)

Syntax
Reaction ::= [oid,] [event,] [body,] [action] [,postcond] [,alternative]
event ::= Naf | Neg | Atom | Message | Reaction
body ::= Naf | Neg | Atom | And | Or
action ::= Atom | Assert | Retract | Message
postcond ::= Naf | Neg | Atom | And | Or
alternative ::= Atom | Assert | Retract

Example
<Reaction exec="active" kind="ecapa">

<event> <Atom>…<Atom> <event>
<body> <Atom>…</Atom> </body>
<action> <Atom>…</Atom> </action>
<postcond> <Atom>…</Atom> </postcond>
<alternative> <Atom>…</Atom></alternative>

</Reaction>

