Rules and Reasoning for Graph Data

Harold Boley
University of New Brunswick & RuleML Inc

W3C Workshop on Web Standardization for Graph Data
Creating Bridges: RDF, Property Graph and SQL

4-6 March 2019, Berlin, Germany
Background: Rules and ...

- Views in databases already constitute special Rules (cf. Datalog).
- Rules can define **one-step derivations** between (graph-relational) “forms” (patterns, shapes) that specify data Inputs & Outputs: $I_{form} \rightarrow O_{form}$ “I_{form} derives O_{form}”
 or, equivalently,
 $O_{form} \leftarrow I_{form}$ “O_{form} is derived by I_{form}”

Here, I_{form} and O_{form} may contain variables:
- I_{form} can be matched to data via variable bindings, adding variable-instantiated O_{form} data
- O_{form}-unifying queries can be reduced to I_{form} queries, extracting variable bindings whenever arriving at data
Background: ... and Reasoning

- Reasoning can chain Rules for **multi-step derivations**, e.g.:
 - Forward (bottom-up) Reasoning, only *adding* data
 - Backward (top-down) Reasoning, only *querying* data
 - Forward/Backward-combined (bi-directional) Reasoning

- Reasoning may
 - resolve Rule conflicts, committing to one Rule per step
 - search Rule-chain space, e.g. breadth/depth/best-first

- Ontologies can complement Rules by derived classes to type Rule variables, thus pruning the conflict sets or search space

- Graph ([SPARQL/SHACL](http://www.w3.org/TR/rdf-sparql-pellet/) and [Cypher/PGQL](http://www.pgsql.com/)...*) data forms permit enriched Reasoning via path queries, graph algorithms, etc.*
Languages for Graph Rules and Reasoning

1) Augment languages for:
 a) **Graph Databases** by **Rules and Reasoning**
 b) **Relational Rules and Reasoning** by **Graphs**

2) Examples of such languages:
 a) **N3** (augmenting **RDF** triple-store Graph Databases)
 b) **LIFE** (ψ-terms), **F-logic** (frames), **RIF** (frames), **PSOA RuleML** (psoa terms)

3) Metamodel helps **Bridging Graph and Relational Databases**
Technology for Graph Rules and Reasoning

● **Graph Foundations for Data & Knowledge** (Ontologies & Rules):
 ○ Graph Querying in SPARQL and Cypher/PGQL/...
 ○ Graph Reasoning in N3 with engines **Cwm**, **EYE**, etc.
 (cf. [W3C Notation 3 Community Group](https://www.w3.org/2005/Community/Notation3/))
 ○ Joint Replication of Labeled Property Graphs

● **Graph-Relational Bridges**: **RDB2RDF**, **PSOATransRun**, ...
 ○ Normalize F-logic frames into RDF-triple conjunctions (cf. **N3Basic**)

● **Semantics Bridges**: Ontology languages defined via Rules:
 ○ [Extending OWL 2 RL in (RIF and SPIN) Rules](https://www.w3.org/TR/owl2-rules/)
 ○ [Warded Datalog+/-](https://www.w3.org/TR/w理由-datalog/-)
 ○ [Substantiating Knowledge with EYE](https://www.w3.org/2005/Community/EYE/)
Beyond Deductive Reasoning / From Relations to Graphs

- Quantitative (probabilistic) extensions (focus: StarAI Workshops):
 - Statistical Relational Learning/AI (cf. GraRel/DOR)
- Qualitative extensions (also transferred from Relational to Graph Data):
 - Inductive (Functional and Logic) Programming (cf. AAIP Workshops)
 - Analogical Reasoning (cf. Argument from Analogy)
 - Association Rule Learning
 - Abductive Reasoning (cf. Abductive Logic Programming)
 - Relevance Logic
 - Defeasible Logic
 - Argumentation Theory