
The RuleML Family
of Web Rule Languages

PPSWR’06, Budva, Montenegro, 10 June 2006
Revised, RuleML’06, Athens, GA, 11 Nov. 2006
Shortened, Vienna, SWT Course, 17 Nov. 2008

Harold Boley
University of New Brunswick, Canada
National Research Council of Canada

1

Introduction

� Rules are central to the Semantic Web

� Rule interchange in an open format
is important for e-Business

� RuleML is the de facto open language
standard for rule interchange/markup

� Collaborating with W3C (RIF), OMG (PRR,
SBVR), OASIS, DARPA-DAML, EU-REWERSE,
and other standards/gov'nt bodies

2

RuleML Enables ...

Rule

modelling
markup

translation
interchange

execution
publication
archiving

in

UML
RDF

XML
ASCII

3

RuleML Identifies ...

� Expressive sublanguages
� for Web rules

� started with
� Derivation rules: extend SQL views

� Reaction rules: extend SQL triggers

� to empower their subcommunities

4

RuleML Specifies ...

� Derivation rules via XML Schema:
� All sublanguages:(OO) RuleML 0.91

� First Order Logic: FOL RuleML 0.91

� With Ontology language: SWRL 0.7
� A Semantic Web Rule Language

Combining OWL (W3C) and RuleML

� With Web Services language: SWSL 0.9

� Translators in & out (e.g. Jess) via XSLT

5

Modular Schemas

� RuleML: Rule Markup Language
� RuleML derivation rules (shown here) and production rules

defined in XML Schema Definition (XSD)
� Each XSD of the family corresponds to the

expressive class of a specific RuleML sublanguage

� The most recent schema specification of RuleML is
always available at http://www.ruleml.org/spec

� Current release: RuleML 0.91
� Previews: http://wiki.ruleml.org/XSD_Workplan

“RuleML is a family of sublanguages
whose root allows access to
the language as a whole and
whose members allow to identify
customized subsets of the language.”

. . .

6

Schema Modularization

� XSD URIs identify expressive classes
� Receivers of a rulebase can validate

applicability of tools
(such as Datalog vs. Hornlog interpreters)

� Associated with semantic classes
(such as function-free vs. function-containing
Herbrand models)

� Modularization (Official Model)
� Aggregation:

e.g., Datalog part of Hornlog
� Generalization:

e.g., Bindatalog is a Datalog

7

E.g., in http://www.ruleml.org/
0.91/xsd/hornlog.xsd
<xs:redefine
schemaLocation=
"datalog.xsd">
<xs:include
schemaLocation=
"modules/cterm_module.xsd"/>

� Rectangles are sublanguages
� Inheritance between schemas

� Ovals are auxiliary modules
� Elementary, including only

element and/or attribute definitions
� Become part of sublanguages

8

Bring Datalog to the Semantic Web

� Start with n-ary relations (not binary properties)
� Keep Variable typing optional (reuse RDFS’

subClassOf taxonomies as sort lattices)
� Allow signature declarations of arities and types
� Employ function-free facts as well as Horn rules

(rather than 1st: RDF descriptions; 2nd: RDF rules)
� Use function-free Herbrand model semantics

(querying stays decidable)
� Provide three syntactic levels:

� User-oriented: Prolog-like, but with “?”-variables
� Abstract: MOF/UML diagrams
� XML serialization: Datalog RuleML

9

Business Rule: Positional

''The discount for a customer buying a product is 5 percent
if the customer is premium and the product is regular.''

<Implies>
<head>

<Atom>
<Rel>discount</Rel>
<Var>customer</Var>
<Var>product</Var>
<Ind>5.0</Ind>

</Atom>
</head>
<body>

<And>
<Atom>

<Rel>premium</Rel>
<Var>customer</Var>

</Atom>
<Atom>

<Rel>regular</Rel>
<Var>product</Var>

</Atom>
</And>

</body>
</Implies>

Implies

Atom Atom

Atom
head body

And

discount

premium customer regular product

customer product 5.0

Var Var IndRel

Rel RelVar Var

10

Extend Datalog for the Semantic Web (I)

� Allow slots as name->filler pairs in Atoms
(cf. F-logic’s methods and RDF’s properties)

� Extend optional types and signatures for slots

� Add optional object identifiers (oids) to atoms

� Separate Data literals from Individual
constants

11

Business Rule: Slotted (for OO)

''The discount for a customer buying a product is 5 percent
if the customer is premium and the product is regular.''

Implies

Atom Atom

Atom
head body

And

discount

premium customer regular product

customer product 5.0

Var Var DataRel

Rel RelVar Var

rebate
itembuyer

<Implies>
<head>

<Atom>
<Rel>discount</Rel>
<slot><Ind>buyer</Ind><Var>customer</Var></slot>

<slot><Ind>item</Ind><Var>product</Var></slot>
<slot><Ind>rebate</Ind><Data>5.0</Data></slot>

</Atom>
</head>
<body>

<And>
<Atom>

<Rel>premium</Rel>
<Var>customer</Var>

</Atom>
<Atom>

<Rel>regular</Rel>
<Var>product</Var>

</Atom>
</And>

</body>
</Implies>

12

Extend Datalog for the Semantic Web (II)

� Permit IRI webizing for Data (XML Schema Part 2),
Individuals (RDF’s resources), Relations,
slot names, types (RDFS’ classes), and
oids (RDF’s about)

� Introduce Module (scope) construct for clauses
(cf. RDF’s named graphs)

� Add scoped-default (Naf), strong (Neg), scoped-
default-of-strong negation (unscoped: cf. ERDF)

� Integrate with Description Logics
� Homogeneous (SWRL, Datalog RuleML + OWL-DL)
� Hybrid (AL-log, DatalogDL, DL+log, ...)

13

Bring Horn Logic to the Semantic Web

� Augment Datalog with uninterpreted Functions
and their Expressions; also for extended Datalog

� Augment Datalog’s Herbrand model semantics with
such Functions (querying becomes undecidable)

� Extend Datalog syntaxes
� XML Schema of Hornlog RuleML inherits and augments

XML Schema of Datalog RuleML

� Add Equality and interpreted Functions (XML
serialization: attribute in="yes")

� Reuse XQuery/XPath functions and operators as
built-ins

14

Specify a First-Order Logic Web Language

� Layer on top of either
� Disjunctive Datalog: Or in the head generalizing Datalog

� Disjunctive Horn Logic: Or in head of near-Horn clauses

� Alternatively, layer on top of either
� Disjunctive Datalog with restricted strong Negation

� Disjunctive Horn Logic with restricted strong Neg

� Permit unrestricted Or, And, strong Neg, and
quantifiers Forall and Exists to obtain FOL

� Use semantics of classical FOL model theory
� Extend Hornlog RuleML syntax to FOL RuleML

15

Approach Production and Reaction Rules

� Share Condition (C) part with earlier languages
as proposed for the RIF Condition Language

� Develop Action (A) part of Production Rules via a
taxonomy of actions on KBs (Assert, Retract, ...),
on local or remote hosts, or on the surroundings

� Develop Event (E) part of Reaction Rules via a
corresponding taxonomy

� Create CA and ECA families bottom-up and map
to relevant languages for Semantic Web Services

� Serialized: <Reaction> E C A </Reaction>
� See http://ibis.in.tum.de/research/ReactionRuleML TG

16

Bidirectional Interpreters in Java

� Two varieties of reasoning engines
� Top-Down: backward chaining

� Bottom-Up: forward chaining

� jDREW: Java Deductive Reasoning Engine
for the Web includes both TD and BU
http://www.jdrew.org

� OO jDREW: Object-Oriented extension to jDREW
http://www.jdrew.org/oojdrew

� Java Web Start online demo available at
http://www.jdrew.org/oojdrew/demo.html

17

OO jDREW Slots

� Normalized atoms and complex terms
� oids (object identifier)

� Positional parameters (in their original order)
� Positional rest terms
� Slotted parameters (in the order encountered)
� Slotted rest terms

� Efficient unification algorithm
� Linear O(m+n): instead of O(m*n)

� No need for positional order
� Slots internally sorted

� Steps:
� Scan two lists of parameters

� Matching up roles and positions for positional parameters
� Unifying those parameters

� Add unmatched roles to list of rest terms
� Generate dynamically a Plex (RuleML’s closest equivalent to a list)

for a collection of rest terms

18

discount(?customer,?product,percent5)
:- premium(?customer), regular(?product).

premium(PeterMiller).
regular(Honda).

positional

POSL
syntax

19

discount(cust->?customer;prod->?product;rebate->percent5)
:- premium(cust->?customer), regular(prod->?product).

premium(cust->PeterMiller).
regular(prod->Honda).

slotted

POSL
syntax

20

OO jDREW Types

� Order-sorted type system
� RDF Schema: lightweight taxonomies of the Semantic Web
� To specify a partial order for a set of classes in RDFS

� Advantages
� Having the appropriate types specified for the parameters
� To restrict the search space
� Faster and more robust system than when reducing types to

unary predicate calls in the body

� Limitations
� Only modeling the taxonomic relationships between classes
� Not modeling properties with domain and range restrictions

21

base_price(customer->[sex->male;!?];
vehicle->:Car;
price->650:Integer).

base_price(customer->[sex->male;!?];
vehicle->:Van;
price->725:Integer).

22

Conclusions

� RuleML is modular family, whose root allows
to access the language as a whole and
whose members allow customized subsets

� New members joining, e.g. Fuzzy RuleML
� Concrete & abstract syntax of RuleML

� Specified by modular XSD (shown here) & MOF

� Formal semantics of OO Hornlog RuleML
� Implemented by OO jDREW BU & TD

� Interoperability/Interchange of/with RuleML
� Realized by translators, primarily via XSLT

