
Reaction RuleML Technical Group

Tutorial

Reaction RuleML

Nov. 11th, 2006

Athens, GA, USA

at RuleML‘06

Adrian Paschke (Co-Chair Reaction RuleML Technical Group)
IBIS, Technical University Munich

Reaction RuleML
http://ibis.in.tum.de/research/ReactionRuleML

Nov. 11th, Athens, GA, USA at RuleML’06

Tutorial

2 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Agenda

1. Introduction to Reaction RuleML
Intention of Reaction RuleML
Goals of Reaction RuleML
Relation to RuleML language family
Scope of Reaction RuleML

2. Reaction RuleML 0.1
Introduction
Examples

3 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Reaction RuleML is …

An open, general, practical, compact and user-friendly XML-
serialization language for the family of reaction rules including:

ECA rules and variants such as ECAP rules and triggers (EA rules)
Production rules (CA rules)
Active rules (rule execution sequences)
Event notification and messaging rules including agent
communications, negotiation and coordination protocol rules
Temporal event / action and state/fluent processing logics
Dynamic, update, transaction, process and transition logics

… but not limited to these, due to extensible language design

4 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Reaction RuleML is intended for e.g., …

Event Processing Networks

Event Driven Architectures (EDAs)

Reactive, rule-based Service-Oriented Architectures (SOAs)

Active Semantic Web Applications

Real-Time Enterprise (RTE)

Business Activity Management (BAM)

Business Performance Management (BPM)

Service Level Management (SLM) with active monitoring and enforcing of
Service Level Agreements (SLAs) or e-Contracts

Supply Chain Event Management

Policies

…

5 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

… where reaction rules of the various kinds can be … (1)

serialized in a homogeneous combination with
other rule types such as conditional derivation
rules, normative rules, exceptional, default,
prioritizied rules or integrity constraints;

managed, maintained and interchanged in a
common rule markup and interchange language;

internally layered and unitized to capture
sublanguages such as production rules, ECA rules,
event notification rules, KR event/action/state
processing and reasoning rules;

6 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

… where reaction rules of the various kinds can be … (2)

managed and maintained distributed in closed or open
environments such as the (Semantic) Web including
different domain-specific vocabularies which must be
dynamically mapped into domain-independent rule
specifications during runtime

interchanged, translated and executed in different target
environments with different operational, execution and
declarative semantics;

engineered collaboratively and verified/validated statically
and dynamically according to extensional but also
intensional knowledge update actions which dynamically
change the behavioral logic of the event-driven rules
systems

7 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Our goals are …

to enable interoperation between various domains of event/action
definition and processing such as:

Active Databases, Production Rules Systems, (Multi) Agent Systems, KR Event/Action
Logics and Transactional Dynamic Update Logics, Transition and State Process
Systems

to be an general and open intermediary between various “specialized”
vendors, applications, industrial and research working groups and
standardization efforts such as:

OMG PRR
W3C RIF
Rewerse (e.g. XChange, R2ML, ECA-ML)

Reaction RuleML as “GLUE” between previously separated
approaches to event/action/state definitions and

processing/reasoning techniques

Bridging the gap between the divergent notations and
terminologies via a general syntactic and semantic design

8 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

How does Reaction RuleML relate to RuleML?

RuleML

Derivation
Rules

Reaction
Rules

Integrity
Constraints

Transformation
Rules

Derivation RuleML

Integrity
RuleML

Reaction RuleML

RuleML
Translators

Homogeneous Approach

9 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Scope of Reaction RuleML (1)

10 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Classification of Event Space – 1st Dimension (1)

Processing (a.k.a. situation detection or
event/action computation / reasoning)

Short term: Transient, non-persistent, real-time selection and
consumption (e.g. triggers, ECA rules): immediate reaction
Long term: Transient, persistent events, typically processed in
retrospective e.g. via KR event reasoning or event algebra
computations on event sequence history; but also prospective
planning / proactive, e.g. KR abductive planning: deferred or
retrospective/prospective
Complex event processing: computation of complex events from
event sequence histories of previously detected raw or other
computed complex event (event selection and possible consumption)
or transitions (e.g. dynamic LPs or state machines); typically by
means of event algebra operators (event definition) (e.g. ECA rules
and active rules, i.e. sequences of rules which trigger other rules via
knowledge/state updates leading to knowledge state transitions)

Derived from: Paschke, A.: ECA-RuleML: An Approach combining ECA Rules with temporal interval-based KR Event/Action Logics and
Transactional Update Logics, Internet-based Information Systems, Technical University Munich, Technical Report 11 / 2005.

11 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Classification of Event Space – 1st Dimension (2)

…

Deterministic vs. non-deterministic: simultaneous
occurred events give rise to only one model or two or
more models
Active vs. Passive: actively detect / compute / reason
event (e.g. via monitoring, sensing akin to periodic pull
model or on-demand retrieve queries) vs. passively listen
/ wait for incoming events or internal changes (akin to
push models e.g. publish-subscribe)

12 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Classification of Event Space – 2nd Dimension

Type
Flat vs. semi-structured compound data structure/type, e.g. simple
String representations or complex objects with or without attributes, functions
and variables
Primitive vs. complex, e.g. atomic, raw event or complex derived/computed
event
Temporal: Absolute (e.g. calendar dates, clock times), relative/delayed (e.g.
5 minutes after …), durable (occurs over an interval), durable with
continuous, gradual change (e.g. clocks, countdowns, flows)
State or Situation: flow oriented event (e.g. “server started”, “fire alarm
stopped”)
Spatio / Location: durable with continuous, gradual change (approaching
an object, e.g. 5 meters before wall, “bottle half empty”)
Knowledge Producing: changes agents knowledge belief and not the state
of the external world, e.g. look at the program effect

13 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Classification of Event Space – 3rd Dimension

Source
Implicit (changing conditions according to self-updates)
vs. explicit (internal or external
occurred/computed/detected events) (e.g. production
rules vs. ECA rules)
By request (query on database/knowledge base or call
to external system) vs. by trigger (e.g. incoming event
message, publish-subscribe, agent protocol /
coordination)
Internal database/KB update events (e.g. add, remove,
update, retrieve) or external explicit events (inbound
event messages, events detected by external systems):
belief update and revision
Generated/Produced (e.g. phenomenon, derived
action effects) vs. occurred (detected or received
event)

14 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Classification of the Action Space (1)

Similar dimensions as for events

Temporal KR event/action perspective: (e.g. Event, Situation, Fluent
Calculus, TAL)

Actions with effects on changeable properties / states, i.e. actions ~ events
Focus: reasoning on effects of events/actions on knowledge states and properties

KR transaction, update, transition and (state) processing perspective:
(e.g. transaction logics, dynamic LPs, LP update logics, transition logics,
process algebra formalism)

Internal knowledge self-updates of extensional KB (facts / data) and intensional KB
(rules)
Transactional updates possibly safeguarded by post-conditional integrity constraints /
test case tests
Complex actions (sequences of actions) modeled by action algebras (~event
algebras), e.g. delayed reactions, sequences of bulk updates, concurrent actions
Focus: declarative semantics for internal transactional knowledge self-update

sequences (dynamic programs)
External actions on external systems via (procedure) calls, outbound messages,
triggering/effecting

15 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Classification of the Action Space (2)

Event Messaging / Notification System
perspective

Event/action messages (inbound / outbound messages)
Often: agent / automated (web) service communication;
sometimes with broker, distributed environment,
language primitives (e.g. FIPA ACL) and protocols; event
notification systems, publish / subscribe
Focus: often follow some protocol (negotiation and
coordination protocols such as contract net) or publish-
subscribe mechanism

16 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Classification of the Action Space (3)

Production rules (OPS5, Clips, Jess, JBoss Rules/Drools,
Fair Isaac Blaze Advisor, ILog Rules, CA Aion, Haley, ESI
Logist, …)

Mostly forward-directed operational semantics for Condition-Action
rules
Primitive update actions (assert, retract); update actions (interpreted
as implicit events) lead to changing conditions which trigger further
actions, leading to sequences of triggering production rules
But: approaches to integrate negation-as-failure and declarative
semantics exist:

E.g. for subclasses of production rules systems such as stratified production rules
with priority assignments or transformation of the PR program into a normal LP
Related to serial Horn Rule Programs

17 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Classification of the Action Space (4)

Active Database perspective (e.g. ACCOOD,
Chimera, ADL, COMPOSE, NAOS, HiPac)

ECA paradigm: “on Event and Condition do Action”;
mostly operational semantics
Instantaneous, transient events/actions according to

their detection time
Complex events: event algebra (e.g. Snoop, SAMOS,
COMPOSE) and active rules (sequences of self-
triggering ECA rules)

18 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Classification of the Event / Action / State Definition and
Processing / Reasoning Space (1)

1. Event/Action Definition
Definition of event/action pattern by event algebra
Based on declarative formalization or procedural implementation
Defined over an atomic instant or an interval of time, events/actions, situation,
transition etc.

2. Event/Action Selection
Defines selection function to select one event from several occurred events (stored in
an event instance sequence e.g. in memory, database/KB) of a particular type, e.g.
“first”, “last”
Crucial for the outcome of a reaction rule, since the events may contain different
(context) information, e.g. different message payloads or sensing information
KR view: Derivation over event/action history of happened or future planned
events/actions

3. Event/Action Consumption / Execution
Defines which events are consumed after the detection of a complex event
An event may contribute to the detection of several complex events, if it is not
consumed
Distinction in event messaging between “multiple receive” and “single receive”
Events which can no longer contribute, e.g. are outdated, should be removed
KR view: events/actions are not consumed but persist in the fact base

19 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Classification of the Event / Action / State Definition and
Processing / Reasoning Space (2)

4. State / Transition Processing
Actions might have an internal effect i.e. change the knowledge state leading to state
transition from (pre)-condition state to post-condition state.
The effect might be hypothetical (e.g. a hypothetical state via a computation) or
persistent (update of the knowledge base),
Actions might have an external side effect

Separation of these phases is crucial for the outcome of a reaction rule
base, since typically events occur in a context and interchange context
data with the condition or action (e.g. via variables, data fields)

Declarative configuration and semantics of different selection and
consumption policies is desirably (also in the syntax layer)

20 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Design Principles of Reaction RuleML (1)

XML Schema + EBNF Syntax

Full RDF compatibility via type and role tags (akin to triple
syntax); but certain role tags can be omitted

Reaction RuleML is intended to be transformed into a
target execution language of an underlying rule-based or
event/action-driven systems

XML Schema Modularization: Layered and uniform design
The layers are organized around increasing expressiveness levels
Benefits:

- easier to learn the language and to understand their relationships
- facilitates reusability and complex language assemblies from modules
- provides certain guidance to vendors who might be interested only in a

particular subset of the features
- easier to maintain, manage and extend in a distributed environment

21 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Design Principles of Reaction RuleML (2)

Reaction RuleML also facilitates declarative
programming with state / event / action
processing rules; it is not just a specification
language;

Fulfils typical criteria for good language design
such as minimality, symmetry and orthogonality

Satisfies typical KR adequacy criteria such as
epistemological adequacy in view of
expressiveness of the language

22 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Part II: Reaction RuleML 0.1

Examples

23 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

General Concepts (1)

General reaction rule form that can be specialized
as needed

Three general execution styles:
Active: 'actively' polls/detects occurred events, e.g. by a ping on a
service/system or a query on an internal or external event database
Passive: 'passively' waits for incoming events, e.g. an event
message
Reasoning: KR event/action logic reasoning and transitions (as e.g.
in Event Calculus, Situation Calculus, TAL formalizations)

Appearance
Global: ‘globally’ defined reaction rule
Local: ‘locally’ defined (inline) reaction rule nested in an outer rule

24 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

General Concepts (2)

Event: event of reaction rule
Active execution: Actively detect / listen to events (possibly clocked by a time function /
monitoring schedule)
Passive execution: Passively wait / listen for matching event pattern (e.g. event message)

Condition
Forward-directed production rule system: trigger for action
Backward-reasoning: top-down goal proof attempt based on derivation rules or query on
external data source
Strong condition: on failure completely terminates the execution, e.g. the message
sequence or the derivation process
Weak condition: on failure proceeds with the derivation or waits for further messages without
execution of the action

Action
Executes action either as internal knowledge update or externally, e.g. as sendMessage or
procedural call on an external system, which executed the action.

Postcondition
Formalizes the knowledge state after the action execution and it is evaluated after the action
has been performed
e.g. transactional postcondition test (e.g. an integrity constraint): rolls back action
(knowledge update) if failed

Alternative Action
Executes alternative action if condition or action fails (akin to “if then else” logic)

25 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Reaction RuleML Syntax – Basic Constructs

<Reaction> General reaction rule construct

@exec = "active | passive | reasoning"; default = "passive"
Attribute denoting “active”, “passive” or "reasoning“ execution style

@kind = Attribute denoting the kind of the reaction rule,
i.e. its combination of constituent parts, e.g. „eca“, „ca“,
„ecap“; is used to select subsets of full reaction rules

@eval = Attribute denoting the interpretation of a rule:
“strong | weak”

<event>,<body>,<action>,<postcond>, <alternative>
role tags; in certain cases may be omitted

26 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Reaction RuleML Syntax – Basic Constructs (2)

<Message> Defines an inbound or outbound message
@mode = inbound | outbound

Attribute defining the type of a message

@directive = [directive, e.g. FIPA ACL]
<Assert> | <Retract> Performatives for internal knowledge updates

… glossary on further constructs such as complex event/action algebra operators
on the Reaction RuleML website (http://ibis.in.tum.de/research/ReactionRuleML)

27 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

General Syntax for Reaction Rules

<Reaction exec="active" kind="ecapa" eval="strong">

<event>
<!-- event -->

</event>

<body>
<!-- condition -->

</body>

<action>
<!-- action -->

</action>

<postcond>
<!-- postcondition -->

</postcond>

<alternative>
<!-- alternative/else action -->

</alternative>
</Reaction>

28 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Examples

29 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Example 1: Production Rule (CA Rule) (1)

“If a heartbeat of a service is recorded to occur at some time then the
service is asserted to be alive at that time.”

Condition Action

30 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Example 1: Active Global Reaction Rule (CA / Production) (2)

<Reaction kind=“ca“ exec=“active”>
<body>

<Atom>
<Rel>occurs</Rel>
<Expr>

<Fun in=“no”>heartbeat</Fun><Var>Service</Var>
</Expr>
<Var>T</Var>

</Atom>
</body>
<action>

<Assert>
<oid><Ind>availability values</Ind></oid> <!– OID of update -->

<Atom>
<Rel>alive</Rel>
<Var>Service</Var>
<Var>T</Var>

</Atom>
</Assert>

</action>
</Reaction>

31 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Example 1: Active Global Reaction Rule (Production Rule) (3)

Production Rule (forward-directed):

(occurs (heartbeat ?service), ?t) => (assert (alive ?service, ?t))

ECA-LP/Prova Syntax (related to ISO Prolog notation)

eca(
occurs(heartbeat(Service),T), % condition

add(“availability values”,”alive(_0,_1).”, [Service, T]) % action
).

32 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Example 2: Active Trigger Rule (EA Rule) (1)

“If a heartbeat of a service is detected to occur at some time then the
service is asserted to be alive at that time.”

Event Action

33 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Example 2: Active Global Reaction Rule (Trigger EA Rule) (2)

<Reaction kind=“ea“ exec=“active”>
<event>

<Atom>
<Rel>occurs</Rel>
<Expr>

<Fun in=“no”>heartbeat</Fun><Var>Service</Var>
</Expr>
<Var>T</Var>

</Atom>
</event>
<action>
<Assert>
<oid><Ind>availability values</Ind></oid> <!– OID of update -

->
<Atom>

<Rel>alive</Rel>
<Var>Service</Var>
<Var>T</Var>

</Atom>
</Assert>

</action>
</Reaction>

34 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Example 2: Active Global Reaction Rule (Trigger) (3)

ECA-LP / Prova Syntax (related to ISO Prolog notation)
eca(

_, % empty time part

occurs(heartbeat(Service),T), % event

_, % empty condition

add(“availability values”,”alive(_0,_1).”, [Service, T]),

, % empty post-cond. and alternative action

).

35 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Example 3: Event Notification Trigger (EA Rule) (1)

“on ACL:inform(XID, Protocol, From, Payload)

do assert(opinion(From, Payload)”

on Event Notification do Update Action

36 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Example 3: Passive Global Notification Reaction Rule (2)

<Reaction kind=“ea“ exec=“passive” eval="strong”>

<event>
<Message mode="inbound” directive=“ACL:inform">

<oid><Var>XID</Var></oid>
<protocol><Var>Protocol</Var>
<sender><Var>From</Var></sender>
<content><Var>Payload</Var></content> <!—message payload-->

</Message>
</event>

<action>
<Assert>

<oid><Ind>opinions</Ind></oid> <!-- OID of update -->
<Atom>

<Rel>opinion</Rel>
<Var>From</Var>
<Var>Payload</Var>

</Atom>
</Assert>

</action>
</Reaction>

37 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Example 3: Passive Global Notification Reaction Rule (3)

Prova Agent Architecture Syntax (related to ISO Prolog notation)

rcvMsg(XID,Protocol,From,“ACL:inform",Payload) :-

add(opinions,"opinion(_0,_1).",[From,Payload]).

38 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Example 4: Timed Event Condition Action (ECA Rule) (1)

Every minute on detection of a new trouble ticket and currently not
maintaining do call the Trouble Ticket System and process the trouble
ticket.

on Timer detect Event and Condition do Action

39 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Example 4: Active Global Reaction Rule (ECA) (2)

<Reaction kind="eca" exec=“active”>
<event>

<Reaction kind="ea">
<event>

<Atom>
<Rel>everyMinute</Rel>

<Var>T</Var>
</Atom>

</event>
<action>

<Atom>
<Rel>detect</Rel>
<Var type="event:EventType1”

mode=“-”>TroubleTicket</Var>
<Var>T</Var>

</Atom>
</action>

</Reaction>
</event>

... next slide

40 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Example 4: Active Global Reaction Rule (ECA) (3)

<body>
<Naf>

<Atom>
<Rel>maintenance</Rel>
<Var>T</Var>

</Atom>
</Naf>

</body>
<action>

<!– Boolean-valued "procedural attachment" on
incident management system -->

<Atom>
<!-- class/object -->
<oid><Ind uri="rbsla.utils.TroubleTicketSystem"/></oid>

<!-- method -->
<Rel in="effect" lang="java">processTicket</Rel>
<!-- parameter -->
<Var type="event:EventType1“

mode="+">TroubleTicket</Var>
</Atom>

</action>
</Reaction>

41 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Example 4: Active Global Reaction Rule (ECA) (4)

ECA-LP/Prova Syntax (related to ISO Prolog notation)

eca(
everyMinute(T), %time precond(clock)
detect(TroubleTicket,T), % event
maintenance(T), % condition
rbsla.utils.TroubleSystem.processTicket(% action

TroubleTicket
)).

% Formalization of time function „everyMinute(T)“
everyMinute(T):-

sysTime(T), % get actual system time/date
interval(timespan(0,0,1,0), T).% interval function

42 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Example 4: Active Global Reaction Rule (ECA) (5)

% Formalization of event detection
detect(TroubleTicket:event_EventType1,T) :-

occurs(TroubleTicket:event_EventType1,T),

consume(TroubleTicket:event_EventType1,T).

% Formalization of condition
maintenance(T) :- holdsAt(maintenance,T).

% Event Calculus state processing rules
initiates(startingMaintenance,maintenance,T).
terminates(stopingMaintenance,maintenance,T).

43 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Example 5: A complex Timed Reaction Rule

“Every 10 seconds it is checked (timer event) whether there is an
incoming request by a customer to book a flight to a certain destination
(event).

Whenever this event is detected, a database look-up selects a list of all
flights to this destination (condition) and tries to book the first flight
(action).

In case this action fails, the system will backtrack and try to book the
next flight in the list otherwise it succeeds sending a “flight booked”
notification and terminates processing (post-condition cut).

If no flight can be found to this destination, i.e. the condition fails or the
found flights could not be booked, the alternative action is triggered,
sending a “booked up” notification back to the customer.”

44 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Example 5: Active Global Reaction Rule (ECAP) (2)

<Reaction kind="ecapa" exec=“active”>
<event>

<Reaction kind="ea">
<event> <!– Timer Event --> </event>
<action> <!- Detect Request --> </action>

</Reaction>
</event>
<body> <!– select list of flights --> </body>
<action> <!– Book flight --> </action>
<postcond> <!– Apply cut --> </postcond>
<alternative> <!- Send Failure --> </alternative>

</Reaction>

45 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Example 5: ECA-LP Formalization (3)

eca(

every10Sec(),

detect(request(Customer, Destination),T),

find(Destination, Flight),

book(Customer, Flight),

!,

notify(Customer, bookedUp(Destination))

).

... next slide

46 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Example 5: ECA-LP Formalization (4)

% time derivation rule
every10Sec() :- sysTime(T), interval(
timespan(0,0,0,10),T).

% event derivation rule
detect(request(Customer, FlightDestination),T):-

occurs(request(Customer,FlightDestination),T),
consume(request(Customer,FlightDestination)).

% condition derivation rule
find(Destination,Flight) :-
on_exception(java.sql.SQLException,on_db_exception(),
dbopen("flights",DB),
sql_select(DB,”flights”, [flight, Flight], [where,
“dest=Destination”]).

... next slide

47 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Example 5: ECA-LP Formalization (5)

% action derivation rule
book(Cust, Flight) :-

flight.BookingSystem.book(Flight, Cust),
notify(Cust,flightBooked(Flight)).

% alternative action derivation rule
notify(Customer, Message):-

sendMessage(Customer, Message).

48 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Example 6: Complex Event Definition

Reaction RuleML

<event>
<Sequence>

<Concurrent>
<Ind>a</Ind>
<Ind>b</Ind>

</Concurrent>
<Ind>c</Ind>

</Sequence>
</event>

ECA-LP

detect(ce,T):-
event(sequence(concurrent(a,b),c),T),
consume(eis(a)), consume(eis(b), consume(eis(c))).

49 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Example 7: Prova as a pattern- and rule-based workflow language

process_join() :-
iam(Me),
init_join(XID,join_1,[c(_),b(_)]),
fork_a_b(Me,XID).

fork_a_b(Me,XID) :-
rcvMsg(XID,self,Me,reply,a(1)),
fork_c_d(Me,XID).

fork_a_b(Me,XID) :-
rcvMsg(XID,self,Me,reply,b(1)),
join(Me,XID,join_1,b(1)).

fork_c_d(Me,XID) :-
rcvMsg(XID,self,Me,reply,c(1)),
% Tell the join join_1 that a new pattern is ready
join(Me,XID,join_1,c(1)).

% The following rule is invoked by join once all the inputs are assembled.
join_1(Me,XID,Inputs) :-

println(["Joined for XID=",XID," with inputs: ",Inputs]).

% Prints
% Joined for XID=agent@hostname001 with inputs [[b,1],[c,1]]

50 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Reaction RuleML brings the following benefits …

Compared to traditional event-driven systems, this
approach has the following major advantages:

rules are externalized and easily shared among multiple applications
(avoiding vendor lock-in) ;
encourages reuse and shortens development time;
changes can be made faster and with less risk;
lowers cost incurred in the modification of business and reaction logic;
Allows to continuously adapt the rule-based behavioral logic to a rapidly
changing business environments, and overcomes the restricting nature of
slow IT change cycles;

“Reaction rules constitute the next step in the application of
rule-based information system (IS) and decision support
systems (DSS) technology aimed at automating reactions to
events occurring in open service-oriented Web applications
(SOAs)”

51 Reaction RuleML Paschke, A. Tutorial on Reaction RuleML, Athens, GA, USA at RuleML’06 2006-11-11

Reaction RuleML offers
open, general, practical, compact and user-friendly XML-serialization language
for reaction rules of various kinds
XML schema, EBNF syntax and RDF syntax compatibility;
layered, extensible design with adjustable expressiveness and identification of specialized
rule types via characterizing attributes
homogeneous representation with other rule types;
complex event / action / state / transition / process definitions to describe e.g.
state machines, Petri nets, or pi-calculus based rule systems or conversation
protocols
transactional internal and external updates or update sequences including
intermediate post-conditional testing and compensating actions / rollbacks
homogeneous combination of derivation rules, reaction rules and other rule types
support for messaging and notification (e.g. multi agent communication, event
notification systems, web service communication, XML based event queries or
action triggers)
integration of procedural object-oriented functionalities and data via expressive
“procedural attachments” which allow to bind dynamically instantiated objects to the
rule variables and use the functions and data during the execution or reasoning
process, e.g. to query or call relational or XML databases, data warehouses,
middleware applications, enterprise beans and other APIs for sensing and effecting
tool support with validators, editors and translators for transforming Reaction
RuleML into executable languages and applications … and much more

Summary

